Algebraic proof of Brooks’ theorem

نویسندگان

  • Jan Hladký
  • Daniel Král
چکیده

We give a proof of Brooks’ theorem as well as its list coloring extension using the algebraic method of Alon and Tarsi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 1 M ay 2 00 9 Algebraic proof of Brooks ’ theorem ∗

We give a proof of Brooks’ theorem as well as its list coloring extension using the algebraic method of Alon and Tarsi.

متن کامل

Another proof of Banaschewski's surjection theorem

We present a new proof of Banaschewski's theorem stating that the completion lift of a uniform surjection is a surjection. The new procedure allows to extend the fact (and, similarly, the related theorem on closed uniform sublocales of complete uniform frames) to quasi-uniformities ("not necessarily symmetric uniformities"). Further, we show how a (regular) Cauchy point on a closed uniform subl...

متن کامل

Some Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces

In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...

متن کامل

Brooks' Vertex-Colouring Theorem in Linear Time

Brooks’ Theorem [R. L. Brooks, On Colouring the Nodes of a Network, Proc. Cambridge Philos. Soc. 37:194-197, 1941] states that every graph G with maximum degree ∆, has a vertex-colouring with ∆ colours, unless G is a complete graph or an odd cycle, in which case ∆ + 1 colours are required. Lovász [L. Lovász, Three short proofs in graph theory, J. Combin. Theory Ser. 19:269-271, 1975] gives an a...

متن کامل

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009